
Pervasive Fun

Dr. Benno Luthiger∗

ETH Zurich
IT Services

PD Dr. Carola Jungwirth
University of Zurich

Chair of Strategic Management and Business Policy

January 2007

Published in: First Monday, 12, 1 January 2007,
http://www.firstmonday.org/issues/issue12 1/luthiger/.

Abstract

The goal of the study on Fun and Software Development (FASD) is to
precisely assess the importance that fun has as motivation for software de-
velopers to engage in open source projects. A survey carried out both under
open source developers and programmers working in Swiss software com-
panies yielded that the fun motive accounts for about 27% to 33% of open
source developers’ motivation.

Fun is a pervasive feature of software development, not only for open
source programmers but in the area of commercial software development
too: Open source developers that are paid for their work are observed to be
very motivated and prepared for future effort, especially if they enjoy their
development time. Furthermore, the fun that the programmers experience
functions as a good proxy for their productivity. Therefore, employers that
want to enhance the programmers’ productivity can safely invest in an envi-
ronment of fun for developers in their company.

1 Introduction

Open source software is available for anyone to use without legal ramifications or
entanglements, because it is legally permitted to be downloaded and used without
having any financial obligations to the original provider. The open source move-
ment again and again has successfully produced software of extraordinary quality
since the concept of open source development came into existence. In fact, over

∗Mail: benno.luthiger@id.ethz.ch

1

time, the emergence of the open source movement has steadily increased its dy-
namic and now poses a serious challenge to the sellers of commercial software.
How is the phenomenon to be explained? Did the homo oeconomicus gone mad
when he entered the software area?

To answer these questions, we have to ask for the motivations of the actors in
the open source area. The scientific research dealing with the open source phe-
nomenon has identified a variety of such motivations and has been able to give a
reasonable theoretical justification for them (e.g. Hars and Ou (2001), Lerner and
Tirole (2002), Osterloh, Rota, and Kuster (2002), Franck and Jungwirth (2003),
Lakhani and Wolf (2003), Hertel, Niedner, and Herrmann (2003)). What’s missing
so far, concerning the research on open source developer’s motivations, is a quan-
tification of the different motivations. We’re able to understand the motivations of
the contributors to open source projects in theory, but we don’t know how impor-
tant these motivations are in practice. Possibly we have a misleading impression of
the open source developers because we assume motivations that are theoretically
elegant but insignificant in praxis. Besides the statements about the existence of
motivations to engage in open source, we have to come to statements about their
relevance in order to get a realistic impression of the actors in the open source area.

This paper aims to take a first step to fill this gap. In the FASD study (Fun
and Software Development, see Luthiger (2006)) the fun motive is the exclusive
concentration. Our ambition is to explain the share of the open source developers’
engagement that can be attributed to fun.

Therefore, the main research question of the FASD study is: How much of the
open source developer’s engagement can be explained by a model in which fun
and spare time enter as independent variables? In other words, we are trying to
determine, assess, and quantify the importance and impact of fun as a motivating
force for open source developers.

The assumption behind this research question is that software development
is done because it is fun. Open source developers, therefore, program in their
spare time, because they consume “fun” with this activity and the developed open
source software is a by-product of this activity. This explanation sounds reasonable
but is not enough to justify the existence of open source software. The fact that
programming is fun may explain that there are persons doing this activity in the
first place. However, we have to take into consideration that one can earn money
by developing software. If we are dealing with rational software developers, the
possibility to earn money is without doubt an additional utility. Consequently, we
don’t expect anyone, at least no rational actor, to program in his or her spare time
anymore, because having fun and earning money is mutatis mutandis better then
only having fun.

Therefore, if we want to explain the existence of open source software by the
fun motive, we have to postulate that having fun while programming is somewhat
substitutive to earning money with software development. The open source devel-
opment has to offer better opportunities to enjoy programming then working in the
commercial software area. In the FASD study, we want to verify this hypothesis

2

by asking our second research question: Do software developers in open source
projects enjoy more fun than programmers working under commercial conditions?

This question can be verified by finding significant differences concerning the
experience of fun when comparing open source and commercial software devel-
opers; however, an additional question then arises: Are the characteristics of an
open source project, which a software developer is participating in his spare time,
constitutive for the difference concerning the experience of fun?

In the next sections we will answer these three research questions based on
the data gathered in the FASD study. The paper is organized as follows. In the
following section (section 2) we briefly describe the design of the FASD study
and the sample characteristics. We then report the quantitative findings about the
importance of fun (section 3). In section 4 we give details about the data gathered
in the control group of commercial software developers. In the next section, we
compare the experience of fun of both the sample of software developers and the
sample of programmers working under commercial conditions (section 5). We
conclude the paper with a discussion of the findings of the FASD study (section 6).

2 The FASD study: design and realization

To measure the importance of fun to explain the open source developer’s engage-
ment, we need a model that links fun as independent variable with engagement as a
dependent variable. With such a model we can adopt the same methodology Hertel
et al. (2003) used to determine the main motivational factors for team development
in an open source project. Thus, instead of asking how important the fun motive is
compared with the other possible motivations for an engagement, the variance of
engagements among different open source developers is considered. By inquiring
into the accuracy of our model (containing fun as independent variable) in explain-
ing the developers’ engagement, the quantitative estimate can be identified.

The model that is being sought can be understood as production function estab-
lishing a functional connection between input and output factors. The output factor
in this case is the engagement in an open source project whereas the input is the
fun the developers have while programming. A customary production function has
a concave shape, indicating that an additional unit of the input factor only adds to a
sublinear increase of the output. A possibility to model such a decreasing marginal
utility is a quadratic function with negative coefficient in the quadratic term.

In addition to “fun” as input factor, it seems reasonable to add the availability
of spare time as a second input factor. The phenomenon we want to explain is the
free and voluntary engagement of an open source developer. Obviously, such an
engagement occurs in their spare time. If an individual developer does not have
any spare time, he simply does not have the possibility to engage, independent
of the fun he might have while programming. Again, the marginal utility of an
additional unit of spare time shall be decreasing, thus, a model is suggested with
negative coefficient in the quadratic term. With these considerations, the following

3

production function is arrived at:

E = c + a1 ∗ F − a2 ∗ F 2 + b1 ∗ T − b2 ∗ T 2(1)

where E: voluntary, unpaid engagement
F : fun
T : spare time
a1, a2, b1, b2 > 0

An alternative production function fulfilling the requirement of decreasing
marginal utility can be obtained by a logarithmic model:

E = c + a ∗ ln F + b ∗ lnT(2)

where E: voluntary, unpaid engagement
F : fun
T : spare time
a, b > 0

Having the production function, the question arises on how to operationalise
the variables in the model. In the FASD study, we used three different possibilities
to operationalise the open source developer’s engagement. First, we asked the
respondents about their readiness for future engagement in open source projects.
Such a question has been proposed in the empirical study by Hertel et al. (2003).
Second, we ask the open source developers about how much of their spare time
they spend for open source projects. As third possibility we tried to determine the
engagement by the number of contributed patches and lines of code. Again, this
question was influenced by the study by Hertel et al.

To determine the fun while programming we rely on the flow concept devel-
oped by Csikszentmihalyi (in Csikszentmihalyi (1975)). Flow is a special form of
fun. The flow experience is characterized by the following elements:

• Concentrating and focusing: a high degree of concentration on a limited
field of attention (a person engaged in the activity will have the opportunity
to focus and to delve deeply into it).

• A loss of the feeling of self-consciousness: the merging of action and aware-
ness.

• Distorted sense of time: the subjective experience of time is altered.

• Control and a high level of absorption: a sense of personal control over the
situation or activity.

• Clear goals and immediate feedback: expectations and rules are discernable
and successes and failures in the course of the activity are apparent, so that
behavior can be adjusted as needed.

4

Apathy Flow

Boredom

Anxiety

Worry

Relaxation

Arousal

Control

Sk
ill
s

C
hallenges

Skills+
Challenges

Figure 1: Flow channel segmentation model (from Novak and Hoffman, 1997, p.
11)

• Flow of actions: each steps leads fluently to the next as if the events are lead
by an inner logic.

For that flow can happen, there are some prerequisites that govern the situation:

• Attention focusing: the attention has to be focused on a limited field of stim-
ulus.

• Balance between ability level and challenge: The perceived requirements
have to be in balance with the person’s ability level, whereas both require-
ments and the person’s abilities have to be over average (in the actor’s view).

The last point has been expanded to the flow channel segmentation model by
the flow research (see Figure 1). This model states that the flow experience is
the counterpart of apathy and beyond boredom and anxiety (see Csikszentmihalyi
(1975)). According to this model, a person falls into apathy if both challenges and
abilities are low. If the challenges increase, apathy goes over to worry and anxiety.
Having the challenges fixed, apathy may change to relaxation and boredom with
increasing skills. Boredom changes to control with raising challenges and eventu-
ally goes over to flow. With constant challenges, anxiety is replaced by arousal and
goes over to flow with increasing abilities.

The flow concept seems to be specifically prolific in the context of computer
work in general and programming in particular. Since Csikszentmihalyi presented
his seminal concept the first time, an abundance of studies appeared that measured

5

flow (e.g. Rheinberg, Vollmeyer, and Engeser (2002), Montgomery, Sharafi, and
Hedman (2004), Chen (2002), Novak, Hoffman, and Yung (1998)). In the FASD
study, we were heavily influenced by the flow questionnaire Remy (2002) devel-
oped to measure the flow experience of computer activities.

To calculate the respondents’ spare time we asked some additional questions.
In order to achieve the aims of the FASD study, a questionnaire for an on-

line survey was developed. There were two versions of this questionnaire, one
addressing open source developers, the other addressing programmers working in
commercial software firms. The questionnaires consisted of 53 questions. The first
part of the questionnaire was identical for both versions. The purpose of this part
was to measure the flow software developers experience during their work.

In the following part, we asked the open source developers about their readiness
for future activities in open source projects, about how many patches and modules
they have developed so far, and how much of their working hours and spare time
respectively they spend on developing open source software. With these questions,
the criterion variables were established, i.e. they function as a measure of the
developers’ commitment.

In a further part of the questionnaire, the open source developers were asked
about the reasons why they initially joined an open source project or why they
started one themselves. In the concluding part of the questionnaire, we gathered
demographic data about the respondents and tried to elicit information about the
opportunity cost they have when they work for open source projects in their spare
time, e.g. by asking them how much spare time and how many hobbies they have.

In the questionnaire for the developers in commercial software firms, we asked
them about their willingness to work overtime and about how many checkins they
did in the past few days in order to get an impression of their commitment. In a
further part of the survey, these developers were asked about their relation to their
employer, i.e. how proud they are of their employer and how well they can develop
personally and professionally at their workplace. We further asked them how fre-
quently they feel deadlines, about the project visions behind the software projects
they work in and about the project managers’ formal authority and professional
competence. Again, gathering demographic data concluded this questionnaire.

The questionnaire we used was a standardised questionnaire that contained no
open questions. About 80% of the questions were formulated as statements; the
respondents then indicated their agreement with the statements from “completely
unimportant” to “very important” and “is never the case” to “is always the case”
respectively on a six point Likert scale.

By directly comparing the answering behaviour of open source developers and
programmers working for commercial firms, it is possible to test the hypothesis
that the two groups differ significantly concerning the experience of flow. And by
asking the commercial developers about deadlines, project visions and formal au-
thority - all characteristic elements of the commercial software development model
which distinguish it from the open source model - the factors responsible for a po-
tential difference between them can be identified.

6

The open source version of the questionnaire was launched on May 3, 2004.
We sent a mail to the mailing lists of the various projects hosted by SourceForge,
GNU/Savannah and BerliOS. This questionnaire was open during 53 days until
June 25, 2004 and was filled in by 1330 respondents. For the second questionnaire,
six software companies were identified in Switzerland ready to collaborate with the
FASD study. The questionnaire for the developers working for these companies
was open from September 20 until November 10, 2004. 114 software developers
filled in this version of the questionnaire.

3 The importance of fun for open source developers

With the data gathered from the open source developers on the one hand and the
model 1 on the other hand we are able to calculate the importance of fun as motiva-
tional factor to explain the open source phenomenon. However, we have to prepare
the data gathered first.

3.1 Engagement and spare time

With the questions 40 to 421 of our questionnaire, we were able to calculate the use
of time for open source (Table 1). The contributors spend an average of 12.56 hours
per week on OSS activities (median: 8 hours per week). This value is 1.5 hours
below the value found out by Lakhani and Wolf (2003, p. 10). 7.31 hours thereof
are spent during spare time (58% of the time, median: 4.8 hours) and 5.22 hours
during working hours (median: 1.5 hours). This statistical analysis corroborates
the impression that the commitment for open source projects mainly happens in the
spare time. Yet, the share of development of open source projects during working
time amounts significant level of 42%. However, we have to consider that the
professional open source developers may be underrepresented in the FASD study.
Professional open source projects can afford their own project infrastructure and,
therefore, are not dependent on the open source platforms addressed in our study.

Combining the answers of the questions 40 to 42, the number of spare time
the respondents have was able to be calculated.2 On average, the respondents have
26.7 hours spare time per week (Table 1). The value for the spare time will be used
as input for the second independent variable in the model.

Table 2 shows the frequency distribution of the engagement for open source the
developers’ spend during their spare time. From this table we can infer that more
then one third of the developers are paid for the majority of their time developing
open source software. For the remaining two thirds of the programmers, the open
source activity takes place mainly in their spare time. Lakhani and Wolf found

140: “Please estimate the time you spend for the development of open source software (average
hours per week).”, 41: “Of the total time spent for the development of open source software, how
much in percent is part of your spare time?”, 42: “How much (on average, in percent) of your spare
time do you spend on activities concerning open source projects?”

2I calculated spare time as follows: spare time = q40 ∗ q41/q42.

7

Table 1: Time spent for open source (hours per week)

Mean Standard Valid
Value Deviation Number

Time spent in general 12.56 (100%) 14.18 1228
Time spent in spare time 7.31 (58%) 8.23 1215
Time spent during working hours 5.22 (42%) 10.82 1215
Hours per week spare time 26.70 24.39 1210

Source: Benno Luthiger, FASD Study, University of Zurich

out a share of 40% paid open source developers (Lakhani and Wolf, 2003, p. 9).
However, they did not specify how much of the open source engagement of these
developers is spent during working hours.

The frequency distribution (see Figure 2) shows two peaks at the corner points.
This distribution suggests a differentiation in professionals and open source hack-
ers. A professional is designated as an open source developer producing less then
10% of his open source engagement in his spare time. Such a programmer engages
virtually exclusively during working hours. In contrast to this kind of developer,
a programmer whose open source engagement takes place for more then 90% in
the spare time, matches the image we have of an open source hacker. The share
of professionals in our sample amounts to around 12% whereas the open source
hackers contribute with about 40% to our sample.

Do these two types differ concerning their engagement for open source? The
statistical analysis shows that indeed the professionals spend with 14.6 hours per
week a significantly higher amount then the hackers with 9.7 hours per week (see
Table 3).

With the questions 29 to 313 we queried different aspects of the readiness for
future engagement. A factor analysis showed that these three items can be reduced
to one underlying factor.4 Therefore, we will work with an index “readiness for
future effort” built of the values of these three items in the further evaluation.

How is the professionals’ readiness compared with the hackers? Not very sur-
prisingly, in two of the three items and also in the whole index, the hackers show
significantly higher values for the readiness then the professionals (see Table 4).
This shows that the hackers are more enthusiastic about their open source activities
then their professional counterparts.

The time spent for open source represents the actual and the readiness for fu-

329: “I’m looking forward to further development activities for open source software.”, 30: “I’m
prepared to increase my future commitment in the development of open source software.”, 31: “With
one more hour in the day, I would program open source software.”

4The computed factor can explain 67% of the variance of the original items. The value of Cron-
bach’s α is 0.74.

8

Table 2: Share of time spent in spare time

Valid Cumulated
Number Percent Percent Percent

Valid 0%-10% 153 11.5% 11.9% 11.9%
11%-20% 83 6.2% 6.5% 18.4%
21%-30% 71 5.3% 5.5% 23.9%
31%-40% 48 3.6% 3.7% 27.6%
41%-50% 74 5.6% 5.8% 33.4%
51%-60% 67 5.0% 5.2% 38.6%
61%-70% 49 3.7% 3.8% 42.4%
71%-80% 107 8.0% 8.3% 50.7%
81%-90% 114 8.6% 8.9% 59.6%
91%-100% 518 38.9% 40.4% 100.0%
Total 1284 96.5% 100%

Missing 46 3.5%
Total 1330 100%

Source: Benno Luthiger, FASD Study, University of Zurich

Figure 2: Share of time spent in spare time

9

Table 3: Time spent per programmer type

Mean Standard Valid
Value Deviation Number

Professional 14.60 24.17 131
Hacker 9.69 9.54 496

Source: Benno Luthiger, FASD Study, University of Zurich

Table 4: Readiness per programmer type

Value
Mean Std.error Number

29: I’m looking forward to further development ac-
tivities for open source software.
Professional 4.66 0.10 145
Hacker 5.08 0.04 503
Total 4.98*** 0.04 648
30: I’m prepared to increase my future commitment
in the development of open source software.
Professional 4.27 0.11 145
Hacker 4.41 0.05 499
Total 4.38 0.05 644
31: With one more hour in the day, I would program
open source software.
Professional 3.60 0.13 146
Hacker 4.23 0.06 487
Total 4.08*** 0.05 633

Index “Readiness for future effort”

Professional 4.16 0.10 148
Hacker 4.58 0.04 505
Total 4.49*** 0.04 653

Remark: *** Difference significant on 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

10

Table 5: Output

Output per year
Mean Std.error Number

Number of patches per year 28.46 4.55 1187
Number of classes/modules/files per year 73.46 8.68 1193

Source: Benno Luthiger, FASD Study, University of Zurich

Table 6: Productivity

Productivity
Mean Std.error Number

Productivity concerning patches 2.55 0.35 1168
Productivity concerning classes/modules/files 7.88 0.99 1172

Source: Benno Luthiger, FASD Study, University of Zurich

ture effort stands for the forthcoming type of engagement. Correspondingly, with
output and productivity we find out aspects of engagement lying in the past. The
starting point for the calculation of output and productivity are the questions about
the number of patches (question 38) and classes/modules/files (question 39) pro-
duced so far. This part of the FASD questionnaire was influenced by the Linux
study by Hertel et al. (2003), where the respondents have been asked about the
number of patches (among other things). However, the question arises whether
this measure (number of patches or number of classes/modules/files) is appropriate
in the context of the FASD study too. We will discuss this issue below.

To calculate the output, we divided the values of the questions 38 and 39 by the
number of years the person is active in the open source area (Table 5). To get the
productivity, we set this calculated output in relation with the time spent per week
for open source (question 40) (see Table 6).

3.2 Flow of open source developers

We operationalized the dependent variable “fun” in our model using the flow con-
cept developed by Csikszentmihalyi. By means of a factor analysis, we tried to
identify the decisive factors which underlie the 28 questions of the FASD ques-
tionnaire concerning the flow experience. Both KMO- and Bartlett’s test proved
that the data is suitable for factor analysis. After some investigations, we decided
to work with only one factor flow/fun. This single factor accounts for 26.8% of the
original variance. The reliability analysis using Cronbach’s α to asses the quality
of the scale resulting from the factor analysis shows a good value for the extracted

11

factor (0.86).
Table 7 shows the extracted factor’s communalities and factor loadings. Factor

loadings vary between 0.73 and -0.02. Not surprisingly, the item (27: I completely
concentrate on my programming work.) showing the highest factor loading has
the highest communality too. The items with the least factor loadings have no
communalities at all.

The reduction of the 28 variables concerning the experience of flow to one
basic factors sets up the basis for further evaluations.

To what extent does the joy of programming correlate with the commitment for
open source? The more fun the developer has while programming and the more
he is wrapped up in the activity, the more time he spends on open source projects.
Table 8 clearly shows that the experience of flow has its strongest effect on the time
spent on open source during spare time whereas the correlation with the time spent
for open source at the work place is smaller and not significant.

The effect of the experience of flow is even stronger on the readiness for future
activities for open source (see Table 9). The more fun a programmer has in his
activity, the greater is his readiness for future commitment in open source projects.

Is there a connection between flow experience and the developer’s output and
productivity? We expect that flow affects these measures positively: The more fun
a programmer has, the more frequently he works for open source and the more
productive he is. However and in contrast to the study by Hertel et al. (2003, see
p. 27), in which the number of patches correlated positive and with significant val-
ues with the motivational factors asked for in their study, we only get insignificant
results. It is questionable whether the measure we used for the programmers’ per-
formance are useful for a study with a broad focus like the FASD study. Hertel et al.
concentrated on the developers of the Linux kernel project. In this community, the
interpretation of the terms (e.g. “patch”, “class” etc.) might be more consistent
then in the sample we investigated leading to the positive effect their study proved.

3.3 Regression analysis

Having prepared the data as described above, we’re ready to carry out the regres-
sion analysis. First, we have to guarantee that the data fulfills the prerequisites
needed for an OLS (ordinary least square) regression. The collinearity statistics
showed that the data exhibited no problems with multicollinearity. On the other
hand, the analysis of the standardized residuals proved the existence of consid-
erable heteroscedastic error terms. However, this problem can be tackled using
heteroscedasticity-consistent standard error estimators for the OLS regression co-
efficients (see Hayes and Cai (2004)). Thus, the data gathered meets the require-
ments for an OLS regression analysis.

We first calculated the regression analysis with the readiness for future effort
as dependent variable. As independent variables we filled in the results of the
factor analysis and the developer’s spare time both in quadratic form. Table 10
shows the results of the first regression analysis. The factor “flow/fun” contributes

12

Table 7: Open Source Questionnaire: Factor loading of fun factor

Flow/fun Communality Loading
1 I lose my sense of time. 0.16 0.40
2 I cannot say how long I’ve been with programming. 0.15 0.38
3 I am in a state of flow when I’m working. 0.25 0.50
4 I forget all my worries when I’m working. 0.29 0.54
5 It’s easy for me to concentrate. 0.41 0.64
6 I’m all wrapped up in the action. 0.46 0.68
7 I am absolutely focused on what I’m programming. 0.48 0.69
8 The requirements of my work are clear to me. 0.33 0.57
9 I hardly think of the past or the future. 0.14 0.37

10 I know exactly what is required of me. 0.27 0.51
11 There are many things I would prefer doing. (-) 0.02 0.16
12 I feel that I can cope well with the demands of the

situation.
0.28 0.53

13 My work is solely motivated by the fact that it will
pay for me. (-)

0.00 -0.02

14 I always know exactly what I have to do. 0.30 0.55
15 I’m very absent-minded. (-) 0.00 0.01
16 I don’t have to muse over other things. 0.13 0.36
17 I know how to set about it. 0.27 0.52
18 I’m completely focused. 0.51 0.71
19 I feel able to handle the problem. 0.41 0.64
20 I am extremely concentrated. 0.51 0.72
21 I’m looking forward to my programming work. 0.37 0.61
22 I enjoy my work. 0.31 0.56
23 I feel the demands upon me are excessive. (-) 0.01 0.09
24 Things just seem to fall into place. 0.31 0.56
25 I forget everything around me. 0.35 0.59
26 I accomplish my work for its own sake. 0.12 0.34
27 I completely concentrate on my programming work. 0.54 0.73
28 I am easily distracted by other things. (-) 0.13 0.36

Source: Benno Luthiger, FASD Study, University of Zurich

13

Table 8: Correlation of time spent for open source with flow/fun

Total of time Spare Working
spent time time

Pearson Correlation 0.12*** 0.16*** 0.03

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

Table 9: Correlation of readiness for future effort with flow/fun

Readiness for
future effort

Pearson Correlation 0.37***

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

significantly only with the linear term. The opportunity costs of the time do not
affect the readiness for future effort at all. The model quality amounts to 15%.

An even better result occurs when using a linear model with the original items
instead of the calculated factor as independent variable (see Table 11). Seven of
these items contribute with significant values whereby item 20 with negative sign.5

If this model is controlled with the demographic variables, only the respondent’s
age contributes significantly, namely with negative sign. The older the develop-
ers are, the less their readiness for future efforts in an open source project. This
seems quite reasonable. This model explains 27% of the variance of the dependent
variable.

Table 12 shows the regression analysis with the (spare) time spent as dependent
variable. In this regression, the factor “flow/fun” contributes significantly, however,
the quadratic term disappears again, whereas the spare time appears with quadratic
term. The model quality of this regression amounts to 32%. The comparatively
high beta coefficient of the spare time indicates that time spent for open source is
mainly limited by the hours of spare time available.

In Table 3 we identified a subsample of our sample as professional open source

52: “I cannot say how long I’ve been with programming.”, 20: “I am extremely concentrated.”,
21: “I’m looking forward to my programming work.”, 22: “I enjoy my work.”, 24: “Things just seem
to fall into place.”, 26: “I accomplish my work for its own sake.”, 27: “I completely concentrate on
my programming work.”

14

Table 10: Readiness as function of fun 1

Dependent variable Readiness for future effort
Independent variables Estimated coefficients
Flow/fun 1.122***

(0.380)
Constant 13.671
R2 0.145
Number of cases 917

Remark: *** Significant on 1% level
Standardized beta coefficients in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

developers. Which importance does fun while programming have for developers
that are paid for their work? Table 13 shows that the factor “flow/fun” contributes
only with the linear term significantly to the regression. The model quality of this
regression is 24% which is significantly higher then the model quality of the re-
gression calculated with all open source developers (Table 10). The professionals’
readiness for future effort seems to be highly determined by the joy of program-
ming.

In this study, professionals have been designated as those open source program-
mers that work for open source in their working hours for at least 90% of the time.
If these programmers work in their spare time for open source, this engagement
is exclusively determined by the availability of spare time. The factor “flow/fun”
doesn’t contribute with significant amount to this model. What is astonishing with
this regression is the fact that it explains 83% of the dependent variable’s variance
(see Table 14). In addition, a regression analysis has been calculated with the whole
time the professionals spend on open source projects. However, this regression did
not show any significant contributions. Thus, it appears that the professionals’ time
spent for open source is determined by other factors then the joy of programming.

For the sake of completeness, the regression analysis has been calculated with
output and production as dependent variables. However, for both of these regres-
sions, the model quality was negligible (below 1%).

3.4 Conclusions

The results obtained in this section allow for the following interpretation:

1. Fun matters: With a model using this motivational factor we are able to ex-
plain between 27% and 32% of the engagement of an open source developer.

15

Table 11: Readiness as function of fun 2

Dependent variable Readiness for future effort
Independent variables Estimated coefficients
21: I’m looking forward to my programming 0.906***

work. (0.284)
22: I enjoy my work. 0.442***

(0.113)
26: I accomplish my work for its own sake. 0.261***

(0.112)
20: I am extremely concentrated. -0.280***

(-0.097)
24: Things just seem to fall into place. 0.252***

(0.094)
27: I completely concentrate on my 0.267***

programming work. (0.090)
2: I cannot say how long I’ve been with 0.146**

programming. (0.072)
Age -0.060***

(-0.170)
Constant 5.954
R2 0.270

Number of cases 1088

Remark: *** Significant on 1% level
** Significant on 5% level
Standardized beta coefficients in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

16

Table 12: Time spent as function of fun and time

Dependent variable Time spent in spare time
Independent variables Estimated coefficients
Flow/fun 1.210***

(0.144)
Spare time 6.127***

(0.781)
Spare time2 -1.468***

(-0.403)
Constant 8.738
R2 0.323
Number of cases 899

Remark: *** Significant on 1% level
Standardized beta coefficients in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

Table 13: Professionals’ readiness as function of fun

Dependent variable Readiness for future effort
Independent variables Estimated coefficients
Flow/fun 1.383***

(0.493)
Constant 12.956
R2 0.243
Number of cases 109

Remark: *** Significant on 1% level
Standardized beta coefficients in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

17

Table 14: Professionals’ spare time spent as function of fun

Dependent variable Time spent in spare time
Independent variables Estimated coefficients
Spare time 1.173***

(0.745)
Spare time2 0.168***

(0.224)
Constant 1.344
R2 0.830
Number of cases 130

Remark: *** Significant on 1% level
Standardized beta coefficients in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

2. The availability of spare time does not matter if we ask the open source
developers for their readiness for future efforts. In contrast, the availability
of spare time is of great importance if we look at the amount of time actually
spent for open source. This understandable result indicates the validity of
the data gathered in the FASD study.

3. The joy of programming does not wear off: each additional unit of fun is
transferred linearly into additional commitment. This statement can be de-
duced from the fact that the flow factors contribute only with linear terms
significantly to the regression.

These results show that it is possible to quantify the importance of the moti-
vational factor “fun” with the method used. Both the developers’ engagement for
open source (as readiness for further work or as amount of time spent) as well as
the fun they enjoy can be determined. Using this data, then, we can look at the
variation in the developers’ engagement and calculate the portion caused by the
variation of the developers’ joy of programming. Thus, this method provides an
explanation of a considerable amount of the open source developers’ engagement.

But the outcome proves that “fun” does not account for all of the open source
programmers’ engagement. Our result conforms to the assumption that a multitude
of motivations coexist to justify an individual developer’s engagement for open
source (see Franck and Jungwirth (2003) or Lakhani and Wolf (2003) for example).
It would be interesting to have quantified other motivational factors as reputation
or altruism with similar methods.

Our data shows further that the open source phenomenon is mainly a free time
occurrence. Of the 12.6 hours a software developer works on average per week,

18

7.3 hours (58%) account for the developer’s spare time. However, a considerable
amount of 5.2 hours (42%) is done during working time. Furthermore, we have
to take into consideration that our data is biased and the professional open source
developers are underrepresented in our sample. We therefore assume that the paid
development of open source software has catched up with the free time open source
development.

Does this mean that fun becomes less important the more important paid de-
velopment becomes? Our data shows clearly that the engagement of paid software
developers is guided by other factors then fun. This can be deduced from the fact
that the amount of time professionals (in our sample of open source developers)
spend for developing open source software is completely independent of their joy
of programming. However, this conclusion only holds if we look at the engage-
ment in the form of hours worked for open source. If we look at their willingness
to engage for open source, “fun” becomes even more significant. In the case of
open source developers in general, the fun motive accounts for 15% of the vari-
ance in the developers’ readiness (see Table 10) whereas in the case of open source
professionals, this number rises to 24% (Table 13).

It can be assumed that enjoying the work increases the motivation and, thus, fun
has a positive effect on the developer’s productivity. If this assumption is true, the
importance of fun does not diminish, on the contrary; and based on the conclusion
drawn in the previous paragraph, fun should even become more relevant in the
commercial software area.

In our study, one object of measurement was the developers’ productivity.
However, the data gathered for productivity shows little correlation with the joy
of programming: Less then 1% of the developers’ productivity can be explained
by the developers’ experience of flow. It was concluded that the way the develop-
ers’ productivity was operationalized is not well suited to the area of this study. We
will discuss the problem to measure and operationalize the productivity of software
developers further in the next section.

4 Fun in the commercial software development area

In the previous section, the importance of fun for open source developers was ex-
amined. It was shown that the joy of programming plays an important role even
for those developers that are paid for their open source engagement. In this sec-
tion, the importance of fun in the commercial software development area will be
investigated.

The questionnaire for the commercial software developers corresponded to the
open source questionnaire concerning the flow part, but differed concerning the
questions about the open source activities. Instead, the commercial developers
were asked about their relation to their employer (e.g. how proud they are of their
employer etc.) and their project situation (e.g. the frequency of deadlines, how
strongly the feel the formal authority of the project manager etc.).

19

This questionnaire was filled by 114 software developers working in six Swiss
software companies. This response rate is too less to make the sample representa-
tive. Therefore, the results presented in this section have to be taken with caution.

4.1 Flow of commercial developers

The preliminary analysis of the questionnaire data filled by commercial software
developers showed that some items must be excluded in order to obtain acceptable
values for the factor analysis. The anti-image correlation matrix showed poor val-
ues for the items 13, 15, 16 and 26.6 After having excluded these values, the KMO
value rose to a satisfactory level of 0.847. Again, only one underlying factor was
sought: flow/fun. This single factor accounts for 35.2% of the original variance.
The reliability analysis using Cronbach’s α to assess the quality of the scale result-
ing from the factor analysis shows a good value for the extracted factor (0.91).

Table 15 shows the extracted factor’s communalities and factor loadings. Fac-
tor loadings vary between 0.77 and 0.41. Thus, the data from the commercial ques-
tionnaire has significantly less variance in the factor loadings. This is consistent
with the fact that the calculated factor flow/fun from the commercial questionnaire
explains significantly more of the items’ variance (35.2%) then the extracted factor
flow/fun in the open source questionnaire (26.8%).

How does the joy of programming correlate with other factors that determine
the work conditions of a commercial software developer? Table 16 shows the cor-
relations of the flow components with the index “Engagement at work place”. This
index consists of the questions 29 to 31.7 Not surprisingly, this engagement corre-
lates highly with the fun the developers have at their workplace.

Table 17 shows the correlations of the flow factor with the index “Relation
to the employer” built with the questions 32 to 35.8 Again, this correlation is
highly significant (although less then the previous). The better the relation to the
employer, the more he enjoys his work. Or put the other way round, the more
fun the software developer has while programming, the better his image of the
employer.

A rather surprising impression results from the correlations of the flow factors
with the questions concerning the project situation (questions 38 to 42, see Table
18). The flow factor correlates significantly positive with the pressure coming from
deadlines. This allows the conclusion that software developers enjoy the more fun
and dive better into their activities the more the feel deadlines. This contradicts the

613: “My work is solely motivated by the fact that it will pay for me.”, 15: “I’m very absent-
minded.”, 16: “I don’t have to muse over other things.”, 26: “I accomplish my work for its own
sake.”

729: “At the beginning of the week, I look forward to the work ahead.”, 30: “I don’t mind working
overtime for my job.”, 31: “I plan my future career in the IT area.”.

832: “I’m proud to work for the firm.”, 33: “I can develop personally and professionally working
for the firm.”, 34: “There is a pleasant atmosphere at the firm, and the firm pursues the right objec-
tives.”, 35: “At the firm, the role model and the processes are implemented professionally and with
success.”

20

Table 15: Commercial Questionnaire: Factor loading of fun factor

Flow/fun Communality Loading
1 I lose my sense of time. 0.29 0.54
2 I cannot say how long I’ve been with programming. 0.21 0.46
3 I am in a state of flow when I’m working. 0.39 0.63
4 I forget all my worries when I’m working. 0.27 0.52
5 It’s easy for me to concentrate. 0.42 0.65
6 I’m all wrapped up in the action. 0.52 0.72
7 I am absolutely focused on what I’m programming. 0.54 0.74
8 The requirements of my work are clear to me. 0.34 0.58
9 I hardly think of the past or the future. 0.17 0.41

10 I know exactly what is required of me. 0.16 0.41
11 There are many things I would prefer doing. (-) 0.28 0.53
12 I feel that I can cope well with the demands of the

situation.
0.28 0.53

14 I always know exactly what I have to do. 0.21 0.45
17 I know how to set about it. 0.39 0.63
18 I’m completely focused. 0.59 0.77
19 I feel able to handle the problem. 0.28 0.53
20 I am extremely concentrated. 0.44 0.67
21 I’m looking forward to my programming work. 0.28 0.53
22 I enjoy my work. 0.31 0.55
23 I feel the demands upon me are excessive. (-) 0.20 0.44
24 Things just seem to fall into place. 0.54 0.73
25 I forget everything around me. 0.55 0.74
27 I completely concentrate on my programming work. 0.56 0.75
28 I am easily distracted by other things. (-) 0.24 0.49

Source: Benno Luthiger, FASD Study, University of Zurich

21

Table 16: Flow and engagement at work place

Correlation Significance
coefficient level

Engagement at work place
Flow/fun 0.402*** 0.000

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

Table 17: Flow and relation to the employer

Correlation Significance
coefficient level

Relation to the employer
Flow/fun 0.244** 0.015

Remark: ** Significant at 5% level

Source: Benno Luthiger, FASD Study, University of Zurich

22

Table 18: Flow and project situation

Correlation Significance
coefficient level

38: How often do you feel deadlines?
Flow/fun 0.271*** 0.006
39: How often are the projects supported by a clear project
vision?
Flow/fun 0.345*** 0.000

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

findings made by Amabile, DeJong, and Lepper (1976), which discovered in their
empirical study that deadlines affect adversely the intrinsic motivation of the per-
sons concerned. It seems that the pressure imposed by deadlines does not impair
the developer’s fun in the context of a software project. On the contrary, dead-
lines seem to be perceived as challenge leading to higher concentration, such that
the programmer buckles down to his work and, therefore, experiencing flow and
having fun at work.

However, the significant correlation between the feeling of a project vision
and the flow factor meets our expectations. It makes sense that an understandable
project vision has a direct impact to the clearness of the task. By means of a project
vision, it is possible to clarify uncertainties in the daily routine, which spurs the
project work and helps the developers to concentrate.

4.2 Fun and productivity

In the open source survey we tried to assess the developers’ productivity by count-
ing the number of patches or modules developed per time unit. In the survey for
the commercial developers, the number of checkins in the last days was requested.
However, in both cases, the numbers gathered from the sources showed no signifi-
cant correlations with the fun the developers experienced. There are two possibil-
ities to interpret this outcome. Either we can conclude that in fact there exists no
such relation between fun and developer productivity or we can infer that such a
relation exists, although the productivity measures used in this study may not be
appropriate for this situation.

If the first interpretation were true, this would mean that a developer would
have fun while programming without being successful in solving problems as well
as the reverse case, where a developer is very productive without enjoying the
work. This does not seem stringent to me. A person experiences flow if his capa-

23

bilities match the challenges posed by the task to fulfill. If the person is not able
to accomplish the task, if she fails, she will be frustrated by the work, far from
enjoying it. In the other case where the person easily achieves the work, the person
will not be able to uphold the concentration needed to be productive if she does
not enjoy the work but gets bored with it. Our interpretation, therefore, for the fact
that we have not been able to show any correlations between fun and productivity
is that we used a poor measure to assess the developer’s productivity.

If the term “productivity” is considered to be a capacity to solve problems, a
reasonable interpretation in the area of software development, it becomes under-
standable why our measures were poorly suitable for this aim. To fix a bug in a
program it possibly needs only one small change on a program line in the code.
However, this might be a bug that is very subtle and hard to find. New features
to implement may need changes in very different areas in the project or can be
implemented in a concise peace of code depending on the technology used. In-
experienced developers possibly need a number of checkins until the module runs
error free whereas expert programmers realize new application functionality fault-
less at the first push. Depending on the circumstances and the problem to solve,
high numbers reflect high productivity or exactly the opposite.

Having shown that the measures used are not adequate, the question arises how
a good measure could look like. Based on our experience with the FASD study,
it looks obvious to understand productivity as an interaction between professional
skills, the tools used and the complexity of the task to accomplish. With constant
skills and tools used, a person is more productive if the number of tasks achieved
per time unit is of higher complexity then if their simple to complete. With given
skills and fixed difficulty level, a person’s productivity will improve if the person
can use efficient tools compared to a situation where she has to use out-of-date
means. With given means and fixed task complexity, a person’s productivity will
increase with growing capabilities.

According to Asendorpf (1996, p. 137) capabilities are “character attributes
that allow achievements.”9 These capabilities consist of social and genetic com-
ponents but they can also be acquired by education and experience, i.e. human
capital investments. By the tools used in the case of software development we
mean the combination of hardware infrastructure (performance of computer pro-
cessors, transferrate of data communication etc.) and the programs used for the
development process (e.g. code editors of integrated development environments,
version and configuration management etc.). Therefore, to predict a software de-
veloper’s productivity one method would be to review this person’s experience and
education as well as the tools the developer has at hand. The task to achieve and
its complexity are exogenously given.

Now, what connection exists between productivity in this interpretation and
fun? From our point of view, productivity is related to fun via the factor “mo-
tivation”. However, motivation does not exist in our list of factors constituting

9“Persönlichkeitsmerkmale, die Leistungen ermöglichen.”

24

a person’s productivity. This makes sense: In our opinion, motivation results of a
match between the person’s capability and the challenge and complexity of the task
to achieve.10 A person with insufficient capabilities is overcharged and is not able
to deliver the requested performance. An undercharged person on the other hand is
bored and for this reason not able to completely exhaust her achievement potential.
Thus, the element “motivation” relates the factor “capability” with the aspect “task
complexity”. For that a person can be productive, she not only has to have suffi-
cient tools and capabilities available, furthermore the person’s capabilities have to
match the task complexity.

As shown by the research of the flow phenomenon, flow experience on its part
implies a correspondence between abilities and challenges (see Figure 1). But if
both motivation as well as flow experience indicate an optimal match of capabil-
ities and challenges and if this correspondence determine a person’s productivity
(presupposing the availability of suitable tools and given the person’s abilities), this
implies nothing else than the fun enjoyed while working is a proxy for the person’s
productivity. Thus, both the original question of how the joy of work affects the
productivity and the derived question of measuring a person’s productivity become
futile. Fun as such can be used as the sought-after measure for productivity.

If this deduction is true that fun is a measure for a software developer’s pro-
ductivity, the findings that a satisfied and confident programmer experiences more
fun gets an additional importance: an employer’s investments in the programmers’
satisfaction and pride should pay off as increased developer productivity. Thus, the
following recommendations for software companies can be made:

1. Foster the developers pride in the firm: Assist the programmer in his or her
professional training, pay attention that the internal processes are profession-
ally and efficiently implemented and take care of a pleasant atmosphere at
the work place.

2. Provide project visions: Show the programmers which problems can be
solved by the new software and what increase in value (for the firm, for
the society) is created hereby.

3. And above all: Gain a clear impression of your programmers’ capabilities
and potential and try to offer the developers an appropriate challenge with
their work.

5 Comparison between open source developers and soft-
ware developers in the commercial realm

After having analyzed both data sets separately, a comparison will be provided in
this section. The objective of this analysis is the verification of the hypothesis that

10There might be cultural and health reasons too that affect a person’s motivation.

25

Table 19: Comparison of age

Comparison of age
Mean Number

open source programmers 28.72 1274
commercial software developers 33.65 113
Total 29.12 1387

Source: Benno Luthiger, FASD Study, University of Zurich

open source developers enjoy more fun while programming as commercial soft-
ware developers. In addition, provided that this verification succeeds, an attempt
will be made to identify the elements of the open source model which are respon-
sible for this difference.

First, the possibility of a systematic bias must be discussed. Although both
data sets are responses of questionnaires that are very similar, partially even iden-
tical, chances are that the results are biased systematically. Subsequently, if the
existence of significant differences can be proven between the two samples, these
differences are not caused by a characteristic diversity of the samples, but result of
the systematic biases provoked by the study design.

Indeed, looking at the two samples and how they have been gathered, there
are some differences that give reasons for systematic biases. The open source sur-
vey took place in spring 2004 whereas the commercial survey was carried out six
months later. The open source questionnaire was addressed at a world wide audi-
ence and was answered primarily in English whereas the respondents of the com-
mercial survey were German speaking software developers in Switzerland. The
programmers in the open source sample were truly self selected whereas the com-
mercial developers were prompted by their employers to participate.

Luckily we have the possibility to bypass these differences by comparing not
only the two samples, but the professionals and the open source hackers within the
open source sample. If this late comparison gives the same result as the first, we
have good reasons to disregard the impact of systematic biases.

5.1 Comparison of age and gender

Open source programmers are 28.7 years old on the average, developers in com-
mercial software firms are about 5 years older (33.7 years, see Table 19). This
difference is highly significant (α < 1%).

The share of female programmers in the open source sample amounts to 2%. In
the commercial software area, however, the share of female developers is six times
higher and amounts to 12% (see cross table 20). Again, this difference is highly
significant.

26

Table 20: Comparison of gender distribution

Gender
Open commer-

Source cial Total
male 1270 99 1369

(1259) (110)
98.1% 87.6% 97.3%

female 24 14 38
(35) (3)

1.9% 12.4% 2.7%
Total 1294 113 1407

Remark: Expected values in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

5.2 Comparison of project situation

Beside of the flow experience we have asked questions concerning the project situ-
ation in both surveys thus making it possible to compare the answers. The compar-
ison shows clearly the differences between the two software development models.
However, Figure 3 shows that as soon as money comes into play the differences
get less accentuated.

As expected, deadlines play virtual no role in open source projects whereas
in commercial software projects, they are very noticeable. The difference dimin-
ishes somehow when we compare hackers with open source professionals but is
still highly significant. As expected, open source projects are backed more often
by clear project visions, in comparison to commercial software projects. Again,
payed open source programmers perceive less project visions than their volun-
teering counterparts. The comparisons concerning the desired amount of project
visions and the professional competence of the project leader are pronounced (see
Table 21).

5.3 Comparison of fun

To compare the flow experience of the two samples, the flow factor resulting from
the factor analysis is reconsidered, by analyzing the data carried out for the two
samples. Additionally we can calculate the mean of all 28 flow items and compare
that value. Figure 4 makes apparent that open source developers show a higher
value for both the flow factor and the average value. Table 22 proves that this
difference is highly significant indeed (α < 1%).

To control for systematic biases, the flow experience of professional open
source developers with the fun open source hackers enjoy must be compared. This

27

Table 21: Project situation: Comparisons

T-Test for equality of the means
Open source Hacker

Project situation vers. Commercial vers. Professional
deadlines -2.203*** -0.779***

(-21.311) (-5.573)
project visions: actual 0.826*** 0.354***

(7.010) (2.780)
project visions: desired 0.211* -0.060

(1.935) (-0.570)
professional competence -0.038 -0.213*

(-0.357) (-1.898)

Remark: *** Significant at 1% level
* Significant at 10% level
T values in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

Figure 3: Comparison of project situation

28

Figure 4: Comparison of flow experience of software developers

Table 22: Flow experience of open source and commercial developers: comparison

T-Test for equality of the means
Flow factor Difference Significance T value
Flow/fun 0.383*** 0.001 3.475

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

29

Figure 5: Comparison of the flow experience of open source developers

Table 23: Flow experience of hackers and professionals: comparison

T-Test for equality of the means
Factor Difference Significance T value
Flow/fun 0.360*** 0.001 3.283

Remark: *** Significant at 1% level

Source: Benno Luthiger, FASD Study, University of Zurich

comparison corroborates the findings of the first comparison. Again, the open
source hackers show a higher value for the flow/fun experience compared with the
programmers paid for their work (see Figure 5, Table 23).

Obviously, the context where the software development is done has an impact
on the joy of work that can’t be denied. Therefore, it can be concluded, the moti-
vational factor “fun” can explain why software developers engage for open source
projects for free: They do this in their spare time because it makes fun, i.e. it is
much more fun to program for free then to develop software under commercial
conditions.

30

Table 24: Characteristic differences of software development models

Feature open source commercial
project vision (+) + ?
formal authority (-) - +
monetary incentives (?) - +
deadlines (-) - +
optimal challenge (+) + ?

Source: Benno Luthiger, FASD Study, University of Zurich

5.4 What makes the difference

The results in the previous subsections confirm our hypothesis: The same activity,
i.e. software development, generates less fun when it is practiced under commer-
cial conditions. Thus, the question arises, which condition causes this difference.
Which feature of the open source development model makes programming in this
context more fun? And is this feature constitutive for the open source development
model or is it possible to apply it to the commercial software development model
too?

In Table 24, some characteristic differences of the two software development
models have been identified. A plus sign in parentheses marks that the attribute is
expected to positively affect the joy of programming, and a plus sign in the columns
indicates that the attribute exists for the respective development model.

Open source projects11 are usually driven by a clear project vision. The project
leader knows the reason why he has founded the project and chosen the appropriate
open source license. He has a clear concept of the project goals. In addition, he
has good reasons to communicate the project goals to other persons, e.g. the actual
and potential developers in the project. A convincing project vision is very well
suited to convince potential contributors to engage as well as to coordinate the
contributions of the different participating programmers and to align them to the
shared goal. Project visions can play a role in commercial software projects too.
However, in a software company, it is, first of all, the formal authority of a superior
that ultimately decides which activities a programmer will work on and how this
work is evaluated. Thus, the project vision doesn’t have the same coordinating
function as in open source projects.

The hierarchical structure of commercial software companies makes another
difference. Hierarchies establish formal authorities. The owner of formal authority
can demand a certain type of behavior from employees. This is not possible for
project leaders of open source projects. The latter have to persuade contributors by

11The following descriptions apply to open source projects that result from a voluntary cooper-
ation. They are less true for open source projects with developers that are paid for their project
work.

31

their professional competence in an objective dispute if they are not satisfied with
the contributions of participating developers.

Besides hierarchies and formal authorities, commercial software companies
can provide monetary incentives that distinguish them from open source projects
— software developers are paid for their work. This possibility is not available for
open source projects based on voluntary cooperation.

Usually commercial software projects are part of a commercial production and
exploitation process: the software has to be delivered at a certain time with specific
functionality. Therefore, deadlines are an inevitable part of commercial production
processes. In contrast, each participant in open source projects can easily evade any
deadlines. As in other aspects of voluntary cooperation, deadlines come into effect
only by voluntary agreement.

A last distinctive feature of the two development model is related to challenges
to software developers. In an open source project a developer can control chal-
lenges by self–selecting involvement in specific projects. Thus, an optimal chal-
lenge can be derived. In commercial projects on the other hand project engagement
is determined by the needs of the firm, not the individual. A given project, there-
fore, has only limited possibilities to take into consideration a developer’s potential
— his abilities, experience and expertise — as well as his interests in professional
and personal evolution.

How can we verify that the described distinctive features really cause the dif-
ference concerning the experience of fun? If a feature has an effect on the flow
experience, this should be indicated by appropriate correlations. In the case of
deadlines for example we expect that the developer experience less flow the more
he suffers from deadlines. The same holds for formal authority: the more such au-
thority is sensible, the less fun the programmer should have. Vice versa we expect
a positive effect in the cases of project visions and optimal challenge: the more sen-
sible the project vision and the better the match between abilities and challenges,
the more joy of programming we predict. Concerning the effect of monetary in-
centives we neither can predict the sign of the correlation nor have we the data to
compute any correlations. The other predictions we are able to test using the an-
swers of the questions concerning the developers’ feelings about the open source
project (questions 32 - 35 in the open source survey) and the employees’ relation
to the company (questions 38 - 42 in the commercial survey). The feature “optimal
challenge” was calculated from the commercial developer’s answers to the items
33 and 35.12 The optimal match of abilities and challenges is considered as given,
in open source projects, at least for developers that aren’t paid for their open source
engagement; hence we have no data to calculate such a correlation for open source
developers. Table 25 shows the significant correlations.

Interestingly, the feature “deadlines” is significantly correlated with fun. Against
our expectations, however, the sign of this correlation is positive for both the open

1233: “I can develop personally and professionally working for the firm”, 35: “At the firm, the role
model and the processes are implemented professionally and with success”.

32

Table 25: Correlations of distinctive features with flow/fun

Sample
Feature open source commercial all
Frequency of deadlines 0.103*** 0.256** 0.057*

(930) (88) (1018)
Frequency of a clear project vision 0.339*** 0.358*** 0.354***

(929) (86) (1015)
Importance of the project leader’s 0.169*** -0.034 0.152***

professional competence (927) (88) (1015)
Formal authority of the - 0.115 -
project manager (101)
Optimal challenge - 0.270*** -

(102)

Remark: *** Significant at 1% level
** Significant at 5% level
* Significant at 10% level
Number of values in parenthesis.

Source: Benno Luthiger, FASD Study, University of Zurich

source as well as the commercial sample, meaning that the software developers
that feel more deadlines at the same time enjoy more fun while programming. This
contradicts the findings made by DeMarco and Lister (1987) and Amabile et al.
(1976) which observed a negative impact of deadlines on the subject’s intrinsic
motivation. Whether the project manager’s formal authority in a commercial soft-
ware project is strongly sensible or not does not affect the developer’s experience
of fun while programming. More in line with our expectations are the other results.
A comprehensible project vision correlates strongly significant with fun as does the
optimal challenge the developer has while programming. The project leader’s pro-
fessional competence has a positive impact on the developer’s joy of programming
in the open source context; however, this is not the case in a commercial software
project.

Therefore, we can conclude from this comparison: Software development is
significantly more fun when it takes place in the context of an open source project
than when it is carried out under commercial conditions. However, the reasons for
this difference are not deadlines, but differences based on the project’s vision and
the challenge of the work at hand. Because there is a correlation between a high
frequency of deadlines and fun, the sheer existence of deadlines in commercial
programming makes this sort of work more fun than less deadline–dependent open
source development. Therefore, difference in the experience of flow between open

33

source and commercial development hinges largely on project visions and optimal
challenges. As shown in Table 21 (and Figure 3), open source projects have definite
project visions and present unique challenges to programmers; hence open source
is positively correlated with fun.

6 Conclusions

The analysis in the preceding sections shows that open source is mainly a part–time
job. An open source developer participates on average for 12.6 hours per week in
open source projects; 58% of this activity occurs in his spare time. From the 1330
software developers that participated in the survey, two-thirds work fully or par-
tially for free for open source projects. In all probability, however, these numbers
underestimate the share of paid contributions to open source. The open source
platforms investigated in this research are very well suited to support open source
projects started and driven by hobbyists. Professional open source projects on the
contrary are able to operate their own project infrastructure and, therefore, are most
likely underrepresented in the study sample. Based on this consideration, we may
infer that paid contributions to open source have perhaps caught up with voluntary
efforts.

In the previous section we were able to show that fun plays an important role
to set up the open source developer’s engagement. With the joy of programming,
27% of the open source developer’s readiness for future effort can be explained.
If the time the developer spends for his open source activities are accounted for,
taking into consideration the available spare time he has, the joy of programming
accounts for 33% of the developer’s engagement. It is notable that fun matters for
paid open source developers and commercial programmers as well to motivate their
engagement. Thus, this study proves that it is possible to quantify the importance
of a specific kind of motivational tool that leads a software developer to engage in
open source activities. It would be interesting if other motivational tools behind
open source could be quantified in an analogous manner.

The comparison between the data gathered from the open source survey and the
commercial survey shows that open source developers experience more fun while
programming then programmers working under commercial conditions. The same
result is arrived at, if the answers of open source developers given by those working
in their spare time (hackers) with those given by open source developers that are
paid for their contributions. We conclude that this difference is not caused by a
systematic bias in the study design but a consequence of the production conditions
that govern the work of software developers.

With the results of this study, therefore, we are able to adjust the image of open
source as product of unselfish and possibly somewhat weird computer hackers.
Software developers that want to consume a homo ludens payoff act absolutely
rational if they look for software projects and project situations that promise a
lot of fun. Our data proves that developing for open source projects offers more

34

and better possibilities to experience fun. Therefore, open source software can be
understood, at least partially, as a by-product of an activity that makes fun and a
development model that supports the need for fun in an optimal way.

The following finding offers interesting perspectives: neither deadlines nor the
existence of formal authorities account for the difference concerning the fun expe-
rience between the open source and the commercial software development model.
If the joy of programming is tied to project visions and optimal challenge, both fac-
tors that can be influenced be employers, wouldn’t it be possible to make software
development under commercial conditions as fun as it is in open source projects?
To answer this question, we have to discuss the elements characterizing the open
source development model: how important are they for the experience of fun and
how they could realized under commercial conditions? In a short summarization,
the characterizing elements of the open source development model are that this
software is produced by a open community of software developers with low en-
try barrier, where the producers are at the same time the users of the software and
where the programmer’s status in the community is achieved not by formal author-
ity but through meritocracy. Two additional important characteristics are that open
source software is released early and often and that the programmers engage on a
voluntary basis.

The openness of a developer community is hardly to achieve in commercial
software projects. Under commercial conditions, the programmers are paid for
their work and, thus, have some kind of contractual relationship to the employer.
Therefore, the pool where the project can look for programmers is not potentially
unlimited but restricted to the boundary of the company. However, the fact that
the group of programmers involved in a software project is open or closed most
probably has no impact of the fun the developers have while programming.

The characteristic that the developers of open source projects are most times
actively using the application they develop (“eat their own dogfood”) is true for
commercial projects probably only by way of exception. This fact has implications
for the project vision and, as our study shows, subsequently on the joy of work.
For a “prosumer” the project vision results immediately from his requirements. In
cases where the user is not identical with the producer, there is increased need for
an explicit and understandable project vision.

The absence of a formal hierarchy that characterizes open source projects is
not viable for commercial projects too. Beyond a doubt, the negative effects of
such hierarchies can be mitigated, for example if the company has shallow hierar-
chies and where these hierarchies are created through transparent processes that are
driven by merit economical mechanisms. Moreover, as our study shows (see Table
25), the existence of formals authorities seems to have no effect on the employees’
ability to experience fun.

Open source projects distinguish themselves by high release frequencies. For a
software developer, it is satisfactory to see his contributions quickly integrated into
the productive application. On the other hand it is frustrating to find the contribu-
tion dumped by the project leader or overworked because of insufficient quality.

35

However, this is a matter of the software project’s quality management and inde-
pendent of whether the project is open source or commercial.

The last feature characterizing open source projects, the voluntary engagement
of software developers, is not applicable for commercial projects where the pro-
grammers are paid for their work. However, voluntariness is the decisive element
for finding the optimal challenge for a programmer given his abilities. If the en-
gagement is voluntary, it’s the programmer who decides which project he will
engage. A crucial factor for his engagement is the challenge he will find in the
project. He does not need complete information neither about the project nor his
capabilities. The voluntariness of engagement allows him to select by trial and er-
ror the project that fits him most. This is possible because there’s a kind of market
place: Open source projects actively seek for the engagement of developers who
are willing to contribute and these are able to pick a project and to leave it again at
will.

This kind of voluntariness is not viable for commercial projects working with
paid programmers (see Barnett, 2004, p. 8f). However, would it not be possible
that a software company establishes some kind of internal market place where var-
ious projects in the company woo for the company’s software developers? In such
a company, the programmers are obliged to engage in projects, but have the choice
to select the one that is most suitable. As a matter of course this would work only
for companies with suitable size because only such companies have the variety of
software projects needed to establish such a market place. A commercial software
company offering such a market place would implement as much as possible from
the open source development model and, therefore, would offer their software de-
velopers the best possibilities to experience fun while programming.

Again, this analysis boils down to “project vision” and “optimal challenge”
as vital factors for the joy of software development. It is comprehensible that
the project situation of a commercial project offers fewer possibilities to software
developers to contribute their potential in an optimal way to the project. It is also
understandable if the responsible persons in commercial software firms do without
project visions that can be understood by the programmers. However, this is not
imperative. It is at most expensive to formulate a project vision and to find an
optimal challenge for the software developers participating in the project, but it
is not impossible. For this reason, one can conclude from our analysis, it is not
impossible either that a software project in a commercial context can be as much
fun as a project occurring under open source conditions.

That said, a subsequent, but different question arises: would it pay off for an
employer to offer a workplace situation that makes programming fun? In other
words: do programmers that enjoy their work contribute as much to the company’s
success that it’s worth the effort?

Based on the knowledge we gathered with this study we would answer in the
affirmative. We come to this conclusion based on two considerations. In general
it is true that employees that like their work contribute positively to the working
climate, that they are more motivated at their work and that the show less absence

36

from work. Specifically, as working with fun indicates that the developer’s abilities
match the task challenges in an optimal way, a programmer having fun is at the
same time productive. They get the best of their abilities.

Because fun is a pervasive feature of software development, fun can be lever-
aged even for software development under commercial conditions. With the study
of the open source development model we can learn, besides many other things,
how fun is experienced while programming, which factor’s are responsible that
programmers have fun and which of the software development model’s elements
constitute the optimal conditions to experience fun while programming.

37

References

Amabile, T., DeJong, W., Lepper, M., 1976. Effects of externally imposed dead-
lines on subsequent intrinsic motivation. Journal of Personality and Social Psy-
chology (34), 92–98.

Asendorpf, J. B., 1996. Psychologie der Persönlichkeit: Grundlagen. Springer-
Verlag, Berlin.

Barnett, L., 2004. Applying open source processes in corporate development
organizations. <http://vasoftware.com/sourceforge/request_
info-dl.php?paper=9> (Zugriff 7.10.2004) .

Chen, H., 2002. Exploring web users’ on-line positive affects .

Csikszentmihalyi, M., 1975. Beyond Boredom and Anxiety. Jossey-Bass, San
Francisco.

DeMarco, T., Lister, T., 1987. Peopleware: Productive Projects and Teams. Dorset
House Publishing, New York.

Franck, E., Jungwirth, C., 2003. Reconciling rent-seekers and donators. Journal of
Management and Governance 7, 401–421.

Hars, A., Ou, S., 2001. Working for free? - motivations of participating in open
source projects. 34th Annual Hawaii International Conference on System Sci-
ences 7, 1–7.

Hayes, A. F., Cai, L., 2004. Using heteroscedasticity-consistent standard error
estimators in ols regression with applications to moderated multiple regres-
sion. <http://www.jcomm.ohio-state.edu/ahayes/hcse.pdf>
(Zugriff 20.1.2005) .

Hertel, G., Niedner, S., Herrmann, S., 2003. Motivation of software developers in
open source projects. Research Policy 32 (7), 1159–1177.

Lakhani, K. R., Wolf, R. G., 2003. Why hackers do what they do: Un-
derstanding motivation effort in free/open source software projects.
<http://opensource.mit.edu/papers/lakhaniwolf.pdf>
(Zugriff 6.10.2003) .

Lerner, J., Tirole, J., 2002. Some simple economics of open source. Journal of
Industrial Economics 52 (6), 197–234.

Luthiger, B., 2005. Fun and software development. In: Scotto, M., Succi, G. (Eds.),
Proceedings of the 1st International Conference on Open Source Systems. ECIG,
Genova.

38

Luthiger, B., 2006. Spass und software-entwicklung: Zur motivation von open-
source-programmierern. <http://www.dissertationen.unizh.ch/
2006/luthigerstoll/diss.pdf> (Zugriff 13.7.2006) .

Montgomery, H., Sharafi, P., Hedman, L. R., 2004. Engaging in activities involving
information technology: Dimensions, modes, and flow. Human Factors 46 (2),
334–348.

Novak, T. P., Hoffman, D. L., 1997. Measuring the flow experience
among web users. <http://www2000.ogsm.vanderbilt.edu/> (Zu-
griff 10.10.2002) .

Novak, T. P., Hoffman, D. L., Yung, Y.-F., 1998. Measuring the flow construc in
online environments: A structural modeling approach. <http://www2000.
ogsm.vanderbilt.edu/> (Zugriff 10.10.2002) .

Osterloh, M., Rota, S., Kuster, B., 2002. Open source software production: Climb-
ing on the shoulders of giants. <http://www.iou.unizh.ch/orga/
downloads/publikationen/osterlohrotakuster.pdf> (Zugriff
10.4.2006) .

Remy, K., 2002. Entwicklung eines Fragebogens zum Flow-Erleben. Fakultät für
Psychologie und Sportwissenschaft, Bielefeld: Diplomarbeit.

Rheinberg, F., Vollmeyer, R., Engeser, S., 2002. Die erfassung des flow-erlebens.
In: Stiensmeier-Pelster, J., Rheinberg, F. (Eds.), Diagnostik von Motivation und
Selbstkonzept. Hogrefe, Göttingen.

39

